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Abstract 
 
Kenya has been experiencing severe drought conditions in the last few years, threatening 
food security within the country. Food security for Kenyans living in the arid or semi-arid 
lands (ASALs) in the central and eastern portions of the country is particularly challenged by 
drought as grazing land and almost all agriculture is rainfed (Ducheyne et al, 2014; 
ReliefWeb, 2019; Shisanya et al, 2011). 
 
The Normalized Difference Vegetation Index (NDVI) is a measure of vegetation vigor and 
common predictor for agricultural yield (Fernandez & Soria-Ruiz, 2017; Huang et al, 2014; 
Kant & Mishra, 2017; Lewis et al, 1998; Lopresti et al, 2014; Maselli & Rembold, 2001; Wu et 
al, 2015). Early warning of yield and drought conditions (possible in part by NDVI data) 
enable policy makers to mitigate negative impacts by directing resources to locations that 
need support (http://www.fao.org/emergencies/emergency-types/drought/en/). While NDVI 
can serve as an indication of plant health, many other remotely sensible factors contribute to 
successful yields, and can be tied to NDVI values (Al-Shehhi et al, 2011; Boke-Olen, 2018; 
Indeje et al, 2006; Shisanya et al, 2011; Wang et al, 2000). 
 
NDVI values however, respond to other environmental variables differently depending on 
regional climates. NDVI values in ASALs have been found to be more sensitive to other 
variables such as rainfall and soil moisture (Indeje et al, 2006; Maselli & Rembold, 2001). 
 
Statement of the Problem 
 
This study aims to determine the strength of the relationship between NDVI and a number of 
other environmental variables: soil moisture, evapotranspiration, and rainfall.  
 
The purpose of this analysis will be to explore regression between these values and how 
regression might be different based on local climates (highly productive agricultural zones, 
ASALs, and arid).  
 
The Random Forest (RF) regression algorithm (seen in other studies relating NDVI to 
environmental variables: Park et al, 2019; Wang et al, 2016) will be used to measure these 
factors’ relationships to NDVI, the relative strength of these factors as predictors, as well as 
to compare differences between predicted and actual NDVI across the three study areas. 
 
 
 
 
 
 
 
 
 
 
 

http://www.fao.org/emergencies/emergency-types/drought/en/


Study Area 
 
This study considers three areas: 
 
Landsat 8 - Path 167 Row 59 - Arid, Semi-Arid Lands Study Area 
November 6th, 2018 
 
An area in the ASAL region was selected because of ASALs particular sensitivity of NDVI to 
rainfall, soil moisture and evapotranspiration (Indeje et al, 2006; Maselli & Rembold, 2001), 
as well as rainfall’s importance for rainfed crops and livestock health (Indeje et al, 2006; 
Shisanya et al, 2011; Speca, 2013). 

 
 
Landsat 8 - Path 169 Row 60 - Highly Productive Study Area 
October 3rd, 2018 
 
This area covers the southwestern ‘Rift Valley’, bordered by Lake Victoria on the west, 
Nairobi to the southeast and Mount Kenya National Park to the east. Kenya’s Rift Valley 
Highlands are characterized by highly productive cropland, reliable rains, and relative food 
security (Speca, 2013; Indeje et al, 2006). These areas account for more than 70% of the 
country’s population (Speca, 2013). One study that considered the relationship between 
NDVI and rainfall found that this region demonstrated low correlation coefficients between 
the two factors, as rainfall beyond what is needed for plant growth does not result in higher 
NDVI values (Indeje et al, 2006). 

 
 



Landsat 8 - Path 167 Row 61 - Arid Study Area 
December 24, 2018 
 
This area covers the arid region in Wajir and Isiolo counties, Kenya. Arid areas have almost 
no agricultural land, but may have rivers that support vegetation. This study area was 
considered as a basis for comparison against the ASAL and HP study areas, and is Kenya’s 
third major climate type. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
These study areas were selected based on the climate type distribution outlined in the map 
below (Red extent polygon = Highly Productive, Green = Arid, Blue = ASAL) :  



 
Study Area Overview Map 

 
Climate-type data was retrieved from the Government of Kenya’s Ministry of Devolution and 
ASALs (2018). For a larger-detail map, please see the attached PDF file. 
 
All images are taken from days during the “short rains” season 
(October-November-December) for two reasons: 

1. This period is considered critical for food security in the ASAL, dictating grazing 
migration patterns and providing water for mainly rainfed crops in the region. 

2. Because the OND season might be the best portion of the year for demonstrating the 
impact of precipitation on NDVI between the climate regions. NDVI values in drier 
regions (like in ASALs) are reported to have strong reactions to changes in rainfall 
and soil moisture. 

 
 
 
 
 
 
 
 
Data 
 



This study considers three Landsat-8 images (as described above) acquired from the USGS 
EarthExplorer data portal (https://earthexplorer.usgs.gov/). NDVI images are calculated from 
the NIR and Red bands of each image. The normalized difference between the 
Near-Infrared and Red reflection leverages the spectral characteristics of plant cellular 
biology, where healthy plants strongly reflect NIR light and weaker/stressed plants (or plants 
that die-off seasonally) more strongly reflect red light.  
 
Other environmental datasets to be related with NDVI include: 
 

- Precipitation data: From UCSB’s CHIRPS program via the Climate Engine 
(https://clim-engine.appspot.com/). This data comes in 1/20 degree resolution and 
represents the total rainfall across Kenya from October 1st, 2018 to January 1st, 
2019, covering the entirety of the short-rains season.  

 
- Soil Moisture: was acquired from the National Snow and Ice Data Center data portal 

which serves SMAP passive radiometer data. The 
"Soil_Moisture_Retrieval_Data_1km_soil_moisture_1km" subset was extracted from 
the Level 2 Soil Moisture HDF product, L2_SM_SP. (Information on data source: 
https://nsidc.org/sites/nsidc.org/files/technical-references/SMAP%20L2_SM_SP%20
PSD_20180531.pdf, page 50) 

 
- Evapotranspiration Anomaly: was measured using the USGS MODIS Simplified 

Surface Energy Balance model Dekadal dataset, which derives ET from thermal 
MODIS images. The image is at 1/96 degree spatial resolution and was averaged 
over the 2018 short-rains season (in line with precipitation data described above). 
https://clim-engine.appspot.com/ 

 
Data for study area reference maps will include: 
 

- IIASA-IFPRI Cropland area maps: available from 
https://application.geo-wiki.org/Application/index.php 

- Kenya Population Distribution: from the Kenya Open Data Initiative (KODI) available 
on the ArcGIS Online Open Data Hub, 
https://hub.arcgis.com/datasets/68cb965bb2a847c0a27af771cf46064f_0?selectedAtt
ribute=UrbanP 

- Climate type distribution from the Government of Kenya Ministry of Devolution and 
ASALs, http://www.devolutionasals.go.ke/county-information/#79b4edb80adb3e6af 

- Major Cities and Major Roads layers were also available through the KODI portal. 
 
 
 
 
 
 
Methods 
 

https://earthexplorer.usgs.gov/
https://clim-engine.appspot.com/
https://nsidc.org/sites/nsidc.org/files/technical-references/SMAP%20L2_SM_SP%20PSD_20180531.pdf
https://nsidc.org/sites/nsidc.org/files/technical-references/SMAP%20L2_SM_SP%20PSD_20180531.pdf
https://clim-engine.appspot.com/
https://application.geo-wiki.org/Application/index.php
https://hub.arcgis.com/datasets/68cb965bb2a847c0a27af771cf46064f_0?selectedAttribute=UrbanP
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The raster and vector data processing for this project was done using ArcGIS Pro 2.2.0. 
 
Preprocessing Steps: 

- Calculate NDVI rasters from Landsat-8 Images 
- remove large bodies of water from images to mitigate the influence of water 

on the NDVI distribution across the image. 
- NDVI values were calculated by taking the normalized difference of two 

Landsat 8’s NIR image (Band 5) and Red image (Band 4): 
 

 
 

- Average, and then majority filter SMAP rasters when data from different dates 
needed to be used. Only data from days before the Landsat imagery was captured 
was used. Changes in any of the environmental variables used to calculate the 
model that occurred after the imagery was captured would have caused inaccuracies 
when modelling NDVI. 

- Create two randomly-distributed point feature classes for each study area, one for 
storing training data (from the acquired raster data), and the other for holding 
predictions.  

- Values from NDVI, soil moisture, evapotranspiration and rainfall rasters were 
extracted to the training point feature classes in each study area.  

 
Classification Steps: 
 

- This analysis used the “Forest-based Classification and Regression” geoprocessing 
tool in ArcGIS Pro (tool documentation: 
https://pro.arcgis.com/en/pro-app/tool-reference/spatial-statistics/forestbasedclassific
ationregression.htm).  

- Train classifier to test the performance of different variable combinations for the 
model and record the results. The training data can be compared with a validation 
dataset to determine the effect size of the model when targeting data outside of the 
training set.  

- Test training with different parameterization schemes to find the best possible fit with 
the training data. Iterations that featured larger numbers of samples and larger 
ensemble of trees only had a very marginal improvement in model fit at the cost of 
additional processing time. 

- After recording the statistical results of training and validation, use the same random 
seed generated for training to predict NDVI values to a raster. 

 
 
 
 
 
Study Area Contextualization & GIS methods: 

https://pro.arcgis.com/en/pro-app/tool-reference/spatial-statistics/forestbasedclassificationregression.htm
https://pro.arcgis.com/en/pro-app/tool-reference/spatial-statistics/forestbasedclassificationregression.htm


- Landsat coverage areas were cross-referenced with the Agricultural Areas feature 
class to make sure they qualified as representative areas for each of the climate 
types. This was accomplished by selecting agricultural area polygons within the study 
area polygons generated in the cloud removal step, summing the area of all 
agricultural area polygons, and then finding the percentage of agricultural area within 
the study area by taking the normalized difference between the agricultural area and 
the study area multiplied by 100. The proportion of agricultural area in each study 
area was consistent with climatological definitions. 

 

Study Area Agricultural Area 

Arid 0.04% 

ASAL 30.0% 

Highly Productive 51.6% 

 
- To determine population distribution across climate regions, county-level population 

data was summarized over the climate type areas (also at the county-level); the total 
population of counties with the same climate type were expressed as a bar chart. 
Major cities points were overlaid on the map to reinforce population summary 
analysis; the majority of cities are co-located with ASALs and agriculture, and there 
are only a small number of cities in arid areas. The population distribution analysis is 
a useful way of showing the spatial variability in the drought experience as illustrated 
by remote sensing indicators.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Results 



 
 
Expected Results 
 
Based on my review of the relevant literature, I expected NDVI to be closely related to all of 
the selected environmental variables. And I anticipated weaker correlations between the 
chosen variables and NDVI in the highly productive study area compared to the ASAL study 
area. It follows then that the predicted NDVI surface for the ASAL study area will more 
closely resemble the actual NDVI surface, and the percent difference in NDVI values across 
the images will be lower than for the Rift Valley study area. 
 
 
Actual Results 
 
Contrary to the expected results, the comparison of RF regression predictions against 
measured NDVI found that predictions were the most accurate for the HP study area (R2 = 
0.70), and were progressively weaker in the ASAL (R2 = 0.54) and arid (R2 = 0.32) study 
areas. These values indicate the relative strength of the explanatory variables as predictors 
for NDVI.  
 
 

 
Scatterplot comparing Measured and Predicted NDVI values. 

HP regression equation: 
 

 
 
 
 



 
Scatterplot comparing Measured and Predicted NDVI values in ASAL study area 

ASAL regression equation: 
 

 

 
Scatterplot comparing Measured and Predicted NDVI values in Arid study area 

Arid regression equation: 
 

 
This trend in correlation strength across study areas may have been due to how strongly 
clustered NDVI values were in the sample data. ASAL and arid study areas showed much 
stronger kurtosis values compared to HP. Less variation of NDVI might have made it harder 
for the RF regression model to differentiate NDVI in predictions. The arid comparison shows 
some notable instances where NDVI was severely over and under predicted. This might 
have been due to the change in spatial resolution from the Landsat NDVI to NDVI prediction 
raster. Because bodies of water (the most significant contributors to higher NDVI values) 
were sparse, pixels in the prediction raster near water bodies may have been conflated with 
much drier pixels with lower NDVI values. 
 



 
Histogram showing the distribution of NDVI values in the HP study area 

Kurtosis: 2.15732 [Wide distribution] 
Skewness: - 0.00618 [Nearly Symmetrical] 

 

 
Histogram showing the distribution of NDVI values in the ASAL study area 

Kurtosis: 6.34767 [Tight distribution] 
Skewness: 1.17583 [Skewed Left] 

 

 
Histogram showing the distribution of NDVI values in the Arid study area 

Kurtosis: 8.12913 [Tight distribution] 
Skewness: 1.51610 [Skewed Left] 



Gini Coefficient / Importance Scores 
 
The RF regression also outputs importance scores for each explanatory variable to help 
determine their relative usefulness for the model. This score is based on the probability of a 
correct classification when using the respective explanatory variable to determine a branch 
in the tree. Relatively high importance scores indicate that an explanatory variable had a 
higher probability of predicting the correct value when fitting the model to the training data.  
 
Large differences in importance scores may be an indication that certain explanatory 
variables are negatively impacting the model. In this study importance scores were relatively 
close to one another, with SMAP trailing slightly for all study areas (see table below). The 
exceptionally wide difference between SMAP and CHIRPS precipitation importance values 
for the HP study area (25% vs. 41%) may be a sign that soil moisture is a less decisive value 
when explaining variation in NDVI. Adding additional explanatory variables may further 
separate the importance of these two factors. 
 
Relative Importance of Variables (Table): 

 HP ASAL ARID 

CHIRPS 41% 39% 38% 

MODIS_ET 33% 37% 37% 

SMAP 25% 24% 25% 

Note: importance values are expressed here in terms of share of importance rather than Gini 
Coefficients, which change based on input training data, number of explanatory variables 
and other factors. 
 
Model Performance - Training Data 
 
The models all had comparable R2 values (~ 0.880) when fitting to the training dataset — a 
good signal for the capacity of the model to explain the variation of data supplied to the 
model when training. Validation R2 values, which measure the capacity of the model to 
explain variation on 10% of the reserved data, were all fairly high, ranging from 0.381 to 
0.589. This conforms to expected correlations concerning training vs. validation data in 
general; training R2 should be the highest as it is the only data that is “seen” by the model 
when it is being built. See the table below. 
 
 

 HP ASAL ARID 

Training r-squared 0.899 0.878 0.875 

Training Standard Error 0.012 0.011 0.012 

Validation r-squared 0.478 0.381 0.589 

Validation Standard Error 0.069 0.054 0.05 

 
 



Discussion 
 
 
Advantages of the Random Forest Regression model 
 
Each decision tree in the random forest is a high variance model that will result in widely 
different regression determinations when supplied with different subsets of the data. These 
inaccuracies are mitigated by “bagging” - ‘B’ootstrapping and ‘AG’gregating the results of 
many decision trees each considering random bootstrapped datasets.  
 
In categorical classification models, aggregation is a “majority rules” approach where the 
most common categorical value across all decision trees is the final determination for the 
sample to predict. 
 
For continuous values, the mean of all values at terminal nodes of the decision trees is the 
predicted value. 
  
 
Potential Sources of Error 
 
There are several sources of error that could potentially have caused NDVI predictions to be 
less accurate: 
 

- Cloud Cover 
 
Cloud cover, especially in imagery taken during the rainy season, makes it impossible to 
take full advantage of all of the pixel values in the scene. Data removed from the image 
because it was covered by clouds or cloud shadows might have helped better explain NDVI. 
The ASAL study in particular was impacted by cloud cover (~11%) and had a substantial 
number of pixels removed before RF regression. 
 

- SMAP mixed dates  
 
Soil moisture data needed to be aggregated for the ASAL and arid study areas due to 
limitations in geographic coverage. Only data captured before the Landsat imagery 
acquisition date was used, as the measured NDVI values could not possibly be caused by 
conditions in the future. No more than two different dates were used to generalize a soil 
moisture surface for each study area. 
 
The available SMAP data did not permit complete coverage of the ASAL Landsat data (see 
image below). 
 



 
SMAP images could not cover the entire study area; the northwest corner of the study area 

needed to be excluded from sample data collection. 
 

- Landsat mixed dates 
 
The Landsat data needed to be taken from different parts of the season based on 
geographic coverage availability as well as cloud cover. Dates ranged from October 3rd 
(HP), November 6th (ASAL) and December 24th, 2018 (arid). While the different dates 
wouldn’t affect the regression model as the data were all contained in each respective study 
area, it does mean that comparisons between regression model performance across study 
areas may be impacted. 
 

- SMAP not aggregated and summarized 
 
Unlike the rainfall and evapotranspiration data, there was no option to acquire SMAP data 
aggregated over the season. Discrete dates needed to be aggregated to approximate soil 
moisture for the area. This specificity may be one explanation for why soil moisture was the 
explanatory variable variable with the lowest importance score across all of the RF models; 
aggregating values over longer periods smooth out the impacts of isolated events (e.g. 
short-lived heavy rains in an otherwise dry season). 
 

- Misspecification - Missing explanatory variables  
 
More variables (like PET, temperature, agricultural land, etc.) might have explained more of 
the variation in NDVI resulted in more accurate regression models. The inclusion of more 
explanatory variables would also help make better determinations on variable importance. 
Greater numbers of explanatory variables will result in a wider distribution of importance 
scores and enable easier differentiation between high/low importance score variables. 
 

- Decreased spatial resolution for output prediction images 
 
I did not have adequate processing power to produce NDVI predictions that matched the 
spatial resolution of Landsat Images (30 m) and was required to predict to cells that were the 
minimum of the explanatory raster inputs (~ 1079 m). Matching the resolution of the Landsat 
images would have been helpful for determining the accuracy predictions for scales as small 



as individual farm plots. The output prediction surface is far too coarse to make localized 
accuracy determinations for anything smaller than the county level. 
 
 
Conclusions 
 
In this study, I demonstrated the predictive power of three environmental variables (rainfall, 
evapotranspiration, and soil moisture) for NDVI. The relationship between environmental 
variables and NDVI is important because NDVI is often used to project crop yield in 
countries that struggle with food security. Based on the results of the RF regression models, 
the environmental variables used in this study were better able to predict NDVI in high 
production areas in Kenya, and were less useful predictors in the food insecure ASAL and 
arid areas. These findings are contrary to the expected results.  
 
In future work, I would attempt to see what other environmental variables might be leveraged 
to predict NDVI, and conduct the same RF regression across several years. Multi-temporal 
data would likely help determine how well NDVI could be predicted by other remotely sensed 
environmental data. 
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Appendix 
 
HP Regression Report: 

 
 
ASAL Regression Report: 

 
 
 
 
 
 



Arid Regression Report: 

 
 
For high-resolution viewing, refer to the pdf versions 
 
Study Area Overview Map: 

 



Dataset Display Map: 

 
NDVI Prediction vs. Measured NDVI Comparison Map: 

 
 


